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A methodology based on spectral collocation numerical methods for global flow stability
analysis of incompressible external flows is presented. A potential shortcoming of spectral
methods, namely the handling of the complex geometries encountered in global stability
analysis, has been dealt with successfully in past works by the development of spectral-ele-
ment methods on unstructured meshes. The present contribution shows that a certain
degree of regularity of the geometry may be exploited in order to build a global stability
analysis approach based on a regular spectral rectangular grid in curvilinear coordinates
and conformal mappings. The derivation of the stability linear operator in curvilinear coor-
dinates is presented along with the discretisation method. Unlike common practice to the
solution of the same problem, the matrix discretising the eigenvalue problem is formed
and stored. Subspace iteration and massive parallelisation are used in order to recover a
wide window of its leading Ritz system. The method is applied to two external flows, both
of which are lifting bodies with separation occurring just downstream of the leading edge.
Specifically the flow configurations are a NACA 0015 airfoil, and an ellipse of aspect ratio 8
chosen to closely approximate the geometry of the airfoil. Both flow configurations are at an
angle of attack of 18� with a Reynolds number based on the chord length of 200. The results
of the stability analysis for both geometries are presented and illustrate analogous features.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

While linear stability analysis of canonical, one-dimensional (1D) basic states could utilise basic states provided analyt-
ically or recovered with limited numerical effort as solutions of ordinary-differential equations [9,33], analysis of hydrody-
namic (and aeroacoustic) instabilities of flows through or over complex geometries invariably relies on large-scale
computation. No attempt will be made to review here the wide body of recent literature on the subject of global flow insta-
bility, in its flavor of linear instability of essentially nonparallel flows [36] considered herein. The interested reader is referred
to the early applications of the theory to the study of canonical problems [35,17,18,39], more recent reviews of the subject
[36,6,32], and recent literature on applications of the theory to such diverse applications as non-Newtonian flows [11], rock-
et-motor engines [4], roughness-induced instability in boundary layers [29], buffeting on aircraft wings [8,7], and configu-
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rations of physiological origin [34]. Global stability modes have also been utilised to augment reduced order models (ROM)
constructed using a basis of proper orthogonal decomposition (POD) modes. It has been shown that the addition of linear
stability modes to the basis used to create the POD ROM is required to replicate the correct growth rates when the flow tran-
sition from a steady to an unsteady state [24,26]. In addition, the maturing of theoretical tools for the control of (canonical)
laminar and turbulent flows [15,32] has naturally given rise to interest in applying such tools to control flows in realistic
geometries. An integral part of state-of-the-art approaches in this context [1,12,10] is access to a large part of the global (di-
rect and adjoint) eigenspectra (see e.g. [37] in this respect). The present contribution is thus doubly motivated by interest in
complex geometries of aeronautical interest and means of provision of access to a large part of the eigenspectrum.

The flow configurations of interest presently are an ellipse with an aspect ratio AR ¼ 8 and a NACA 0015 airfoil, both at an
angle of attack of a ¼ 18� to the freestream. The AR of the ellipse was selected to approximate the airfoil surface as closely as
possible, so as to serve as a sense check for the final results. In both cases the Reynolds number Rec � u1c=m ¼ 200, where u1 is
the freestream velocity, c the chord length, and m the kinematic viscosity. For both geometries the flow is incompressible, lam-
inar and steady at Rec ¼ 200 and becomes unsteady at some point before Rec ¼ 300. A preliminary version of the present anal-
ysis has been presented elsewhere [16]. Here, the steady base flow is a requirement for the formulation of the present stability
analysis, leaving a discussion of corrections needed to be made if an unsteady base flow is to be analysed for future work.

It is advantageous to use spectral numerical methods for the stability analysis as they are, at the same level of numerical
effort, more accurate than standard finite volume or finite-element alternatives [28]. The disadvantage with classic spectral
collocation methods is the difficulty in handling geometry [3]. While spectrally accurate and geometrically flexible methods
exist, based on the spectral/hp-element concept [14], this paper will present a means of undertaking a fluid mechanical sta-
bility analysis using spectral collocation numerical methods on a rectangular grid and conformal mapping techniques to rep-
resent the geometry. An analogous approach was also employed for the inviscid BiGlobal stability analysis of a skewed
planar channel and a planar disc geometry in [19], where the mappings from the physical geometry to the calculation do-
main were numerically determined. The conformal mapping approach adopted in the present study is more closely related
to the work of [1] and [10] where the mapping functions were analytical. The flow configuration in these previous studies
were semi-bounded domains, whilst in the present case the flow configurations are lifting bodies.

The paper is organised as follows. In Section 2 the numerical method for the stability calculation will be outlined includ-
ing: the derivation of the perturbation form of the Navier–Stokes equations (NSE) in both the physical and curvilinear do-
main; the derivation and discretisation of the stability linear operator in curvilinear coordinates; and the parallel
procedure for solving the resulting eigenvalue problem (EVP). Following this in Section 3 details regarding the generation
of both the ellipse and airfoil base flows are presented. In Section 4 a general method for transforming the geometry and
velocity components between coordinate systems is detailed. The specific conformal mapping functions required to map
both the ellipse and airfoil base flows are also provided. All of the derivatives required for the conformal mapping of the el-
lipse can be derived analytically. However, owing to the complexity of the airfoil conformal mapping function, one resorts to
calculating the required derivatives using a symbolic mathematical package. A test function indicative of the base flow is
used to verify the airfoil conformal mapping procedure. This same test function is then used in the Section 5 to minimise
the error associated with the interpolation of the base flow from the airfoil finite volume grid to the BiGlobal spectral grid.
In both cases the errors introduced by the present procedure and the convergence of residuals are quantified. Results of the
stability analysis of both flow configurations are finally presented in Section 6.

2. Numerical method

The adopted approach for the stability analysis is to solve an EVP for the linearised perturbation form of the NSE. This will
determine if the instabilities are to grow or decay for a given steady laminar base flow. The equations pertaining to the sta-
bility calculations are written in curvilinear coordinates so that the physical geometry can be represented whilst undertaking
the calculation on a rectangular grid. The approach is illustrated with application to the airfoil geometry in Fig. 1. The domain
associated with the finite volume grid used to produce the base flow is coloured grey, and the stability domain is coloured
black. Both of these domains are illustrated in the physical space, an intermediary cylindrical space, and the stability calcu-
lation domain in Fig. 1(a)–(c), respectively. Performing the stability calculation on a structured rectangular grid, enables the
use of efficient spectral numerical methods. The derivation of the perturbation form of the NSE in both physical and curvi-
linear coordinates is first presented. The discretisation of the linear stability operator in curvilinear coordinates is then de-
tailed, and the parallel procedure for solving the resulting EVP outlined.

2.1. Perturbation form of the Navier–Stokes equations

Modal flow instability is studied by perturbing the NSE to determine whether small-amplitude perturbations have a ten-
dency to either grow (be unstable) or decay (be stable) in time (or space). For a steady base flow the decomposition
uðx; tÞ ¼ �uðxÞ þ e~uðx; tÞ; ð1Þ
can be adopted where �uðxÞ is the steady base flow, ~uðx; tÞ the perturbation and e� 1 an amplitude parameter, considered
small for linearisation. An analogous expression is also adopted for the pressure field pðx; tÞ. Note that the bold face will be



Fig. 1. Coordinate transformations of the finite volume grid (grey) and the stability grid (black) from the (a) physical coordinates ðx; yÞ; to the (b) cylindrical
space ðxcyl; ycylÞ; and finally to the (c) curvilinear coordinates ðf1; f2Þ.
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used throughout to denote vector quantities and matrices. The perturbation form of the NSE is then derived as follows.
Firstly the above decomposition is substituted into the viscous incompressible form of the NSE and the terms are expanded.
For a steady base flow the NSE as a function of only the steady quantities is also satisfied, and this system of equations is
subtracted away from the previous system to produce the perturbation form of the NSE in physical space given by
@~ui

@xi
¼ 0; and ð2Þ

@~ui

@t
þ �uj

@~ui

@xj
þ ~uj

@�ui

@xj
þ @~p
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@xj
: ð3Þ
During the early stages of growth of the instabilities, their amplitude is small and it is valid to assume the nonlinear effects
are also small. In this situation, it is acceptable to remove the right-hand-side term �~uj@~ui=@xj which produces the pertur-
bation form of the Linearised Navier–Stokes Equations (LNSE). This enables an eigenvalue analysis of the system, which de-
scribes the properties of the perturbation for a given base flow �uðxÞ. The generation of �uðxÞ for the ellipse and airfoil flow
configurations is discussed in Section 3.

The above system of equations is valid if the stability calculation is undertaken in physical space, modifications are re-
quired to perform the stability calculation on a rectangular grid whilst still representing the physical geometry. This is done
by rewriting this system of equations in curvilinear coordinates producing
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where f are the coordinates in the calculation domain, and nðf; tÞ. These equations are expanded in Appendix A. The hi terms
result from the transformation between coordinate systems. The linearised system of equations in this case is produced by
setting ~nj@~ni=@fj ¼ 0, enabling an eigenvalue analysis. This provides the instability properties for the base flow �nðfÞ. The base
flow in this instance is mapped from the physical space and interpolated onto the spectral rectangular grid. The mapping
procedure and derivation of the hi terms are discussed in Section 4.

2.2. Linear stability operator in curvilinear coordinates

The flow configurations analysed within this study have two-dimensional (2D) base flows, therefore, the eigenvectors
also take on a 2D form. To assist in the following discussion, a (time-step) instantaneous state vector is defined by
q � ðn; pÞ. Modal perturbations are introduced using the ansatz
~qðf; tÞ ¼ q̂ðf1; f2Þeibf3�iXt þ q̂�ðf1; f2Þe�ib�f3þiX�t; ð6Þ
where the * superscript denotes the complex conjugate operation. The second term on the right-hand-side is the complex
conjugate of the first term and is required because q̂; b and X can in general be complex, while ~q must be real. Here the tem-
poral framework is considered where the complex frequency X ¼ Xr þ iXi is the to-be-determined eigenvalue, where Xr and
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Xi are the real and imaginary components, respectively. The structure of the perturbation in the spanwise direction is pre-
scribed using the real wavenumber b ¼ 2p=Lf3 , where Lf3 is the spanwise wavelength. Substitution of the ansatz (6) into Eq.
(4) and the linearised form of Eq. (5), yields four coupled partial-derivative equations forming an EVP for X such that
Að�q;bÞq̂ ¼ �iXBq̂: ð7Þ
The elements of the linear operators A and B are detailed in Appendix B.
The numerical solution of the EVP in Eq. (7) requires an accurate spatial discretisation of the perturbation eigenvector q̂.

The use of spectral methods has become standard in stability analysis, as they have been shown to attain the best balance
between precision and memory requirements [20,22,28]. Chebyshev–Gauss–Lobatto points ðgÞ are used here to discretise
the wall normal direction ðf2Þ, via an algebraic mapping which allows clustering of points near the wall according to
f2 ¼ l
1� g

1þ sþ g
; ð8Þ
where l and s are the parameters that define the clustering and extension of the discretisation. Fourier collocation is the nat-
ural choice to discretise the azimuthal direction. Equally spaced Fourier collocation points are used to discretise the periodic
direction f1. The extents of the BiGlobal grid in these directions are 0 < f1 < 2p and 0 < f2 < fmax

2 .
The EVP is also complemented with adequate boundary conditions for the perturbations. No boundary conditions are pre-

scribed explicitly for the f1 direction, as the periodicity is imposed with the selection of the Fourier discretisation. In the
other spatial direction, the three components of the velocity perturbation are set equal to zero at the wall, and the compat-
ibility condition for pressure of a zero wall normal gradient is imposed. The properties of the perturbations at the far field
boundary are not known a priori, so the amplitude functions are linearly extrapolated from within the domain.

2.3. Solution process and parallelisation

Due to the size of the leading dimension ðNLDÞ of the A and B matrices, recovery the entire spectrum via the QZ algorithm
[27], which is widely adopted for classic analyses of 1D basic flows, is inappropriate for this application. The QZ algorithm
requires the storage of four matrices whose leading dimension scales with N2

LD and the CPU-time needed scales with N3
LD. The

Arnoldi algorithm [31] obtains a window of the entire spectrum with several orders-of-magnitude less computational effort.
A shift-and-invert strategy is used, where the most unstable eigenmodes are assumed to be centered on a specified estimate
r, and the problem
�Aq̂ ¼ lq̂; ð9Þ
is solved in place of Eq. (7), where
�A ¼ ðA� rBÞ�1B; and ð10Þ

l ¼ 1
�iX� r

: ð11Þ
The structure of B makes it possible to store just one matrix, a modified version of the LU-decomposition of A. More details
on the algorithmic procedure can be found in [36]. As the primary focus of this paper is the solution methodology, r is not
varied. For all calculations presented within r ¼ 0. This means that for a given number of Arnoldi iterations, eigenvalues
equally spaced from the origin have the same level of accuracy. In future studies r could be exploited to improve conver-
gence of eigenvalues located further from the origin.

Eigenvalue problems of this nature require extremely high resolution in order to attain convergence of the eigenvalue
spectrum. It is necessary to store and operate on matrices with NLD � 105, which translates to approximately 390 gigabytes
of memory, clearly not possible on a serial-machine. A recently developed parallel EVP solver [30] is adopted herein; it em-
ploys optimised dense linear algebra libraries and massive parallelisation to make use of distributed-memory supercomput-
ers. Data distribution makes it possible to store and operate on matrices whose dimension is only a function of the number of
processors, so the resolution is constrained only by the number of CPUs available. The work distribution also permits a
reduction in wall-time of the computation. There are four main tasks required to solve the EVP. The required CPU-time of
each of these tasks is estimated as a function of the number of processors ðNprocÞ and NLD. The first task is the generation
and distribution of the matrices amongst the processors. The time required for this process
tEVP / 1þ K0

Nproc

� �
N2

LD; ð12Þ
where K0 is a constant of proportionality. The second task is the LU-decomposition and is performed by the ScaLAPACK rou-
tine pzgetrf. The estimated time for this task is
tLU /
N3

LD

Nproc
: ð13Þ
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The Arnoldi iterations are the third task. This involves the iterative generation of a Krylov subspace and a Hessenberg ma-
trix through a given number of back-substitutions (one per iteration) on the LU-decomposed modified A matrix. Typically
the number of iterations (m) used to recover an adequate portion of the spectrum is between 200 and 1000. The use of a
large m also reduces the dependence of the results on the shift parameter r. The time associated per iteration of this task is
tAr / ð1þ K1NLD þ K2NLDNprocÞ
NLD

Nproc
; ð14Þ
where K1 and K2 are constants of proportionality. The final task is to perform a serial QZ algorithm to recover the Ritz values
of �A as the eigenspectrum of the ðm�mÞ Hessenberg matrix, and the product of ðm�mÞ and ðNLD �mÞmatrices to compute
the associated Ritz vectors. The estimated time taken for this step is
tEIG / NLD þ K3Nproc þ K4NprocNLD; ð15Þ
where K3 and K4 are constants of proportionality. The code was validated and demonstrated to work satisfactorily on the
supercomputers Mare Nostrum (http://www.bsc.es) using up to 1024 processors and Blue Gene/P (http://www.fz-juelich.de)
using up to 4096 processors. Further details of the code and scalability tests are presented in [30]. The base flows are the
variable-coefficients of the partial-derivative EVP and condition the accuracy of the EVP solution. The generation of these
base flows and the coefficients of the EVP will be discussed in some detail below.

3. Generation of base flows

The base flows of both the ellipse and airfoil are required inputs for the stability analysis. These base flows are generated
in physical space using unstructured grids. The specifics are detailed below.

3.1. Ellipse base flow

An ellipse of AR ¼ 8 is placed at a ¼ 18� to the oncoming incompressible flow. The 2D flow around this object is calculated
using the code ADFC [13]. A time-accurate integration of the equations of motion is performed using a semi-Lagrangian time-
integration scheme. The Taylor–Hood finite-element method is adopted for the spatial discretisation. A rectangular domain
is used in which x=c 2 ½�10;15	 � y=c 2 ½�10;10	, with the center of the ellipse placed at ðx ¼ 0; y ¼ 0Þ. A Dirichlet boundary
condition of u ¼ ðu1;0;0Þ is applied at the inlet, top, and bottom boundaries. A Neumann boundary condition is applied to
the outlet boundary where the velocities derivatives normal to the boundary are set equal to zero. A wall boundary condition
is also applied at the ellipse surface. Fig. 2 illustrates instantaneous snapshots of the velocity magnitude at Rec ¼ 200 and
Rec ¼ 300 in a sub-domain in proximity to the ellipse body. In both instances the flow separates just downstream of the lead-
ing edge, with the flow steady at Rec ¼ 200 and unsteady at Rec ¼ 300. The present stability formulation is only valid for stea-
dy flows, consequently the steady base flow of Rec ¼ 200 is adopted.

3.2. Airfoil base flow

The second flow configuration is a 2D NACA 0015 airfoil, again at a ¼ 18�. The flow field is numerically simulated using
the incompressible version of the code CDP. This code was developed at the Stanford Center for Turbulence Research and is
an unstructured finite volume based solver. Numerical dissipation is minimised by discretising the continuity and momen-
tum equations such that they discretely conserve kinetic energy. This is enforced on the pressure and convective terms using
the approach outlined in [21]. A second-order accurate Adams–Bashforth method is used for the time-integration, and a sec-
ond-order accurate central difference scheme adapted for unstructured grids is used for the spatial differentiation [21]. A C-
type grid of the airfoil is adopted, with the block topology illustrated in Fig. 3(a). The grid is summarised by the arc ðCÞ and
Fig. 2. Instantaneous velocity magnitude of the ellipse base flow with a Rec of: (a) 200; and (b) 300.

http://www.bsc.es
http://www.fz-juelich.de


Fig. 3. The grid used to generate the airfoil base flow, with the: (a) block topology; and (b) mesh at the airfoil boundary surface. Note the domain associated
with this grid, is the grey coloured domain in Fig. 1(a).
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the dimension between the airfoil body and the outer boundary ðNÞ. The computational domain size in these directions is
LN � LC ¼ 60c � 10c, and is of comparable size to the previous ellipse grid. The number of cells in the C and N directions are
850� 120, respectively, for a total of 102,000 elements. The grid in proximity to the airfoil body is illustrated in Fig. 3(b). The
airfoil surface geometry is defined by the conformal mapping process discussed in Section 4.3. This is important as it ensures
that the BiGlobal and finite volume grids lie on the same surface. The application of the boundary conditions is consistent
with the previous ellipse case. The simulation is advanced in time with a constant time-step size of Dt ¼ 2� 10�4c=u1,
ensuring that the maximum Courant Friedrichs Lewy (CFL) number in the entire domain does not exceed 1.0. The simulation
is run until a laminar steady state is attained, which occurs after a time of 40c=u1 non-dimensional units. Consistent with
the ellipse, the flow separates just downstream of the leading edge and is steady at Rec ¼ 200 (see Fig. 4(a)) and unsteady at
Rec ¼ 300 (see Fig. 4(b)).

4. Conformal mapping between physical and stability calculation domains

Both base flows are generated in physical space and they must be transformed into the curvilinear domain before per-
forming the stability calculation. The general curvilinear coordinate system is first discussed and the specific mapping func-
tions for both configurations are then presented. The ellipse transformation is simple enough to derive the required
analytical derivatives by hand, whereas one resorts to using a symbolic mathematics package for the airfoil case. The airfoil
mapping process is then validated using a test function indicative of the base flow.

4.1. Curvilinear coordinate system

The following discussion documents the transformation between two orthogonal coordinate systems: the physical one;
and the curvilinear coordinate system in which the stability analysis is undertaken. The physical coordinate system is
x ¼ xj1 þ yj2 þ zj3 with unit vectors j1; j2 and j3, and the curvilinear coordinate system is f ¼ f1a1 þ f2a2 þ f3a3 with unit vec-
tors a1; a2 and a3. Given that the conformal mapping functions xðfÞ are all available and differentiable, the basis of the cur-
vilinear coordinate system is determined by
ak ¼
ek

hk
; where ð16Þ
Fig. 4. Instantaneous velocity magnitude of the airfoil base flow with a Rec of: (a) 200; and (b) 300.



V. Kitsios et al. / Journal of Computational Physics 228 (2009) 7181–7196 7187
ek ¼
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where hk are the shape factors ([23]) first mentioned in Section 2.1. The physical velocity field u ¼ uj1 þ vj2 þwj3 can then
be projected onto the curvilinear basis to produce the velocity field n ¼ n1a1 þ n2a2 þ n3a3, where each component nk is given
by
nk ¼ uðj1 
 akÞ þ vðj2 
 akÞ þwðj3 
 akÞ ¼ u
1
hk

@x
@fk
þ v 1

hk

@y
@fk
þw

1
hk

@z
@fk

: ð19Þ
The specific conformal mapping functions transforming the ellipse and airfoil to the rectangular calculation domain are now
presented. For both geometries the third component is unchanged between each of the mappings. This means that z ¼ f3,
and by consequence @z=@f3 ¼ @f3=@z ¼ 1;h3 ¼ 1 and all derivatives of h3 are zero. The following discussion will, therefore,
be confined to the ðx; yÞ and ðf1; f2Þ planes.

4.2. Ellipse conformal mapping

The conformal mapping functions for the ellipse are
x ¼ c coshðf2Þ cosðf1Þ; and ð20Þ

y ¼ c sinhðf2Þ sinðf1Þ; where ð21Þ

c ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

R

q
: ð22Þ
The shape factors for the transformation of each of the fields discussed previously are determined analytically to be
h1 ¼ h2 ¼ h ¼ c 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðf2Þ þ sin2ðf1Þ

q
: ð23Þ
The derivatives of these shape factors additionally required for the operator A are
@h
@f1
¼ c2 sinð2f1Þ

2h
; and ð24Þ

@h
@f2
¼ c2 sinhð2f2Þ

2h
: ð25Þ
All of these terms are analytical and exact, and there is consequently no accumulation of errors associated with the mapping.

4.3. Airfoil conformal mapping

The mapping between the curvilinear and physical coordinates for an airfoil geometry is a little more involved: in total
there are four mappings required. The first, maps from curvilinear space ðf1; f2Þ to an intermediary cylindrical space ðxcyl; ycylÞ
via
xcyl ¼ ðf2 þ 1Þ cosðf1Þ; and ð26Þ

ycyl ¼ ðf2 þ 1Þ sinðf1Þ: ð27Þ
A Joukowski transformation is then used to convert the cylindrical grid to an airfoil shaped mesh of coordinates ðxair; yairÞ
by
xair ¼ ðxcyl þ bÞ 1þ a2

ðxcyl þ bÞ2 þ y2
cyl

 !
; and ð28Þ

yair ¼ ycyl 1� a2

ðxcyl þ bÞ2 þ y2
cyl

 !
; ð29Þ
where the parameters a and b are selected so that the airfoil shape best represents a NACA 0015 airfoil. This airfoil shaped
mesh is then translated by ðxshift; yshiftÞ and scaled by Lscale according to
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xair;scaled ¼ Lscaleðxair � xshiftÞ; and ð30Þ

yair;scaled ¼ Lscaleðyair � yshiftÞ; ð31Þ
and finally rotated clockwise about the leading edge by a to produce the final airfoil coordinates via
x ¼ xair;scaled cosðaÞ þ yair;scaled sinðaÞ; and ð32Þ

y ¼ yair;scaled cosðaÞ � xair;scaled sinðaÞ: ð33Þ
The intermediary coordinate systems are then removed through substitution to produce complicated expressions for xðf1; f2Þ
and yðf1; f2Þ, from which the shape factor expressions are determined. This enables the stability calculation to be undertaken on
the rectangular curvilinear grid, whilst representing the geometry of an airfoil in physical space. To convert the mean velocity
field calculated in physical space to the curvilinear coordinates, the inverse transformations are undertaken in the opposite
order. The finite volume and BiGlobal grids in each of the three spaces are illustrated in Fig. 1. Differentiation of the airfoil con-
formal mapping functions by hand is prone to error, so a symbolic mathematics package is used to determine the required
expressions. The symbolic expressions are then exported as C++ code and used directly in the conformal mapping program.

4.4. Validation of the conformal mapping process

To check the derivative fields of both the ellipse and airfoil mapping functions are determined correctly, 40 analytical
relationships akin to
@xk

@f1

@f1

@xj
þ @xk

@f2

@f2

@xj
¼ djk; ð34Þ
are evaluated at every point in the domain and produce the expected result, where djk is the delta function.
A procedure to verify the airfoil conformal mapping functions is described next. First, a test function indicative of the base

flow is chosen. Then a series of rectangular grids with increasing mesh resolution are generated in curvilinear space, each
with fmax

2 ¼ 1:0. The cells in each case are of constant size. The geometry in the curvilinear space f is mapped to the physical
space x where the test function is applied generating u and @u=@x. These fields are then mapped into the curvilinear space to
produce n and @n=@f. The velocity derivative fields @n=@f are then approximated by spatially differentiating the velocity field
n using a finite difference scheme. If the mapping is performed correctly, the difference between the mapped field and the
finite difference approximation of the derivative fields should decrease with increasing resolution of the curvilinear grids.

An additional complexity arises in the application of the test function. A test function that mimics a typical base flow is
desired, one that is zero at the airfoil surface and grows to the freestream value as a function of the distance from the wall.
This can be achieved by setting the velocity components of u equal to the test function W which is dependent on the asso-
ciated wall normal curvilinear coordinate f2 via
uðx; yÞ ¼ vðx; yÞ ¼ Wðf2Þ ¼ erfðf2Þ; ð35Þ
where erf is the error function. As u is not a function of x directly, the spatial derivatives of u in airfoil space must be mapped
from the spatial derivatives of W in curvilinear space according to
@uðx; yÞ
@xk

¼ @vðx; yÞ
@xk

¼ @Wðf2Þ
@xk

¼ @Wðf2Þ
@f2

@f2

@xk
; where ð36Þ

@Wðf2Þ
@f2

¼ 4ffiffiffiffi
p
p e�

ffiffiffiffiffi
2f2

p
: ð37Þ
The fields u and @u=@y are illustrated in Fig. 5(a) and (b), respectively.
The associated velocity and derivative fields are required in curvilinear coordinates. The velocity components u in the air-

foil space are mapped back through the required transformations into the curvilinear space using Eq. (19) producing n, with
n1 illustrated in Fig. 5(c). The velocity derivative fields @ui=@xj are mapped according to
@nk

@fl
¼ @nk

@x
@x
@fl
þ @nk

@y
@y
@fl

; where ð38Þ

@nk

@xj
¼ @u
@xj

1
hk

@x
@fk
� u

1

h2
k

@xj

@fk

@hk

@x
þ @v
@xj

1
hk

@y
@fk
� v 1

h2
k

@y
@fk

@hk

@xj
; ð39Þ
with @n1=@f2 illustrated in Fig. 5(e).
The mapped derivative fields @ni=@fj are checked by calculating them from the n field using a forth order accurate finite

difference method. This is possible because the cells are rectangular in the curvilinear space. The finite difference operation
produces the @ndiff

i =@fj fields, with @ndiff
1 =@f2 illustrated in Fig. 5(d). The squared difference field between @n1=@f2 and

@ndiff
1 =@f2 is illustrated in Fig. 5(f). The normalised squared errors associated with the spatial derivative fields of n are



Fig. 5. Validation of the mapping of the @uðxÞ=@y field. The test function field variables in airfoil space: (a) uðxÞ; and (b) @uðxÞ=@y, are mapped to the
curvilinear space, respectively producing field variables : (c) n1; and (e) @n1=@f2. The latter field is checked via a finite difference calculation applied to the
n1ðfÞ field, producing (d) @ndiff

1 ðfÞ=@f2. The discrepancy between the finite difference and mapped derivative fields is quantified by (f)
ð@ndiff

1 ðfÞ=@f2 � @n1ðfÞ=@f2Þ2.
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�map
i;j ¼

R
V ð@ni=@fj � @ndiff

i =@fjÞ2dnR
V ð@ni=@fjÞ2dn

; ð40Þ
where V is the domain volume in the curvilinear coordinate system. The mapped derivatives are analytic and their accuracy
should not change with resolution of the mesh. The accuracy of the finite difference calculation, however, should improve
with increased resolution of the mesh. The mapping approach is, therefore, validated if �map

i;j decreases with increasing grid
resolution. This is the case for all of the error measures with �map

1;1 and �map
1;2 illustrated in Fig. 6. �map

1;2 is consistently larger than
�map

1;1 for each mesh because the cell size in the f2 direction is slightly larger than in the f1 direction, and its finite difference
approximation is, therefore, less accurate.

5. Interpolation of data

The basic velocity field must be spatially differentiated and interpolated from the original finite volume (FV) or finite-ele-
ment (FE) grids to the BiGlobal grid, on which the stability analysis will be undertaken. Aside from the selection of the inter-
polation method, there are two possible options available in which to proceed. The first option is to interpolate and
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Fig. 6. Squared difference between the mapped and finite difference approximation of the test function derivatives plotted as a function of the number of
cells.
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differentiate the fields in the physical coordinate system (see Fig. 1(a)) and then map the results to the curvilinear space. The
other option is to first map the raw data from the physical to the curvilinear coordinates and undertake the interpolation and
spatial differentiation there (see Fig. 1(c)). Even though the conformal mapping method is analytical and exact it is also
highly non-linear. Small changes in the initial field may well produce drastic changes in the mapped field. It is, therefore,
advisable to apply the mapping directly to the raw data and to not contaminate the process with any additional errors that
may arise from the interpolation. In addition interpolation processes have a tendency to smooth data and it is preferable to
perform this operation last. Both options were tested and as expected the second produced smoother, more consistent sur-
faces. The details of the second approach are now outlined.

As indicated above, the original basic flow FV/FE fields are first mapped from the physical into the curvilinear coordinate
system. A moving least squares polynomial interpolation method is used to interpolate and spatially differentiate the veloc-
ity fields from the original FV/FE grid mapped into curvilinear space onto the rectangular BiGlobal grid. A new polynomial
surface, is centered at each point on the BiGlobal grid and fit to the velocity field on the original FV/FE grid. This polynomial
surface is then analytically differentiated to determine the spatial derivatives at each point. The number of points Np, re-
quired to define a 2D polynomial surface of order £, is
Np ¼
1
2
ð£þ 1Þð£þ 2Þ þ r; ð41Þ
where r is the number of additional redundant points [5]. If r ¼ 0 then a surface is constructed that passes precisely through
every point. When applied to real data, however, surfaces generated with r ¼ 0 have a tendency to be excessively noisy,
especially the derivative fields. In the present study r ¼ 200 and the relative importance of these additional points are
weighted by a Gaussian function
e�ðLBG!FV=jÞ2 ; ð42Þ
where LBG!FV is the distance between each interpolation point on the BiGlobal grid, and each data point on the FV/FE grid. j
is a smoothness parameter that when increased, creates smoother surfaces due to more of the small scale structures being
filtered out. There are consequently three parameters that control the definition of the surfaces, the polynomial order £, the
number of additional points r, and j.

The most appropriate interpolation parameters are determined by searching for those that best reconstruct the previously
introduced test function. The test function is applied in the physical co-ordinates to both the FV/FE grid (producing uFV and
@uFV=@x) and the BiGlobal grid (producing uBG and @uBG=@x). The fields are then mapped into the curvilinear coordinate sys-
tem for both the FV/FE grid (producing nFV and @nFV=@f) and the BiGlobal grid (producing nBG; @nBG=@f). In the curvilinear
space, the FV/FE test function data ðnFVÞ is then interpolated onto the BiGlobal grid to produce nBG;int and spatially differen-
tiated producing @nBG;int=@f. The normalised squared error between the interpolated fields on the BiGlobal grid and the ana-
lytical fields mapped directly from the test function applied to the BiGlobal grid in physical space are
�int
i ¼

R
V nBG

i � nBG;int
i

� �2
dnR

V nBG
i

� �2
dn

; ð43Þ

�int
i;j ¼

R
V ð@n

BG
i =@fj � @nBG;int

i =@fjÞ2dnR
V @nBG

i =@fj

� �2
dn

: ð44Þ
The parameter set that minimises these error measures for the test function will be adopted for the interpolation of the real
data.
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Fig. 7. The normalised squared error between the test function values evaluated on the BiGlobal grid, and the interpolated values from the finite volume
grid to the BiGlobal grid in the curvilinear coordinate system as a function of (a) £ for j ¼ 0:2; and (b) j for £ ¼ 5. Note r ¼ 200 in both cases. The key in
(b) is applicable to both figures.
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The polynomial order £ has the largest effect on interpolated values and is tested first with j ¼ 0:2 and r ¼ 200 in all
cases. Fig. 7(a) illustrates an initial rapid reduction of the error for each component and then begins to level out at
£ ¼ 5. The levelling out is indicative of the polynomial surface now having enough flexibility to adequately fit to the data.
The accuracy of the fitted surface may continue to improve with increased polynomial order, but care must be taken when
representing the derivative fields. High order polynomial surfaces can produce erratic derivative fields. This is observed from
the test function results with the derivative error measures for £ ¼ 9 greater than £ ¼ 8. For this reason it is advisable to
keep the order of the polynomial as small as possible. From this point forward £ ¼ 5 has been adopted as it is sufficiently
removed from the initial region of significant error.

The j space is tested next with £ ¼ 5. The stability of the interpolation stencils is directly proportional to r [5]. An unsta-
ble stencil is very sensitive to small changes in the stencil values. If r is large and the stencils are stable, j controls the impor-
tance of the points within the stencil and r has little effect. The smaller the value of j the more emphasis is placed on the
closer surrounding points and perhaps better represents the local gradients. The surface and its derivatives, however, also
becomes the less smooth. Fig. 7(b) illustrates that for j < 0:1 significantly higher error measures are obtained than for
j > 0:1. To avoid this steep increase in error j ¼ 0:2 is selected for all subsequent interpolations. To confirm the weak
dependence on r, a final interpolation test was performed with the parameter set £ ¼ 5;j ¼ 0:2 and r ¼ 800 and negligible
change was observed in the resulting surface. The interpolation parameters £ ¼ 5, j ¼ 0:2 and r ¼ 200 were initially used
for the interpolation of the real data, but in some regions in the domain the derivative fields were not as smooth as required.
Increasing the redundancy to r ¼ 800 solved this problem.

6. Stability analysis

The results are now presented for the stability analysis of the steady base flows of the ellipse and an airfoil at Rec ¼ 200,
with a spanwise perturbation wavenumber of b ¼ 1 in physical space. A Krylov subspace dimension of 800 is used in all in-
stances. The eigenvector velocity components are normalised by the largest of the maximum absolute amplitudes of û; v̂ and
ŵ. The two dominant components are illustrated for each mode below.

6.1. Ellipse stability results

The ellipse eigen-spectrum is illustrated in Fig. 8(a) with two eigenmodes highlighted: a monotonically growing mode
M"

e; and an oscillatory decaying mode O#e . The wall normal domain size for this calculation is fmax
2 ¼ 11c and the BiGlobal

grid has a number of Fourier collocation points of Nf1 ¼ 261, and a number of Chebyshev collocation points of Nf2 ¼ 180.
Additional lower resolution cases were also run to confirm the convergence of the spectra. The eigenvalues of M"

e and O#e
are listed in Fig. 8(b) with the number of cells in each BiGlobal grid and memory required for each calculation. This table
illustrates a convergence of the eigenvalues with increased resolution, except perhaps for the growth rate (imaginary com-
ponent) of the M"

e mode.
The temporal and spatial properties of the modes M"

e and O#e from the highest resolution case are now presented. Mode
M"

e has an eigenvalue of X ¼ 0:3716i. It is temporally unstable because the imaginary component Xi > 0 and the amplitude
evolves monotonically in time because the real component Xr ¼ 0. The eigenvector component ŵ is normalised to have a
maximum amplitude of unity, which results in û having an amplitude of order 0.1, and v̂ an amplitude of order 0.01. ŵ is
illustrated in Fig. 9(b), and indicates the presence of a large structure starting at the trailing edge, which grows in size
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and amplitude in the streamwise direction. û in Fig. 9(a) indicates the presence of a similar elongated structure, this time
starting at the leading edge and of the opposite sign as the structure observed in the ŵ component. The amplitude of the
structure in the û component also grows in the streamwise direction. M"

e has similar features to the ‘‘shift” mode of a cyl-
inder wake first discussed in [24]. In that study the ‘‘shift” mode described the deformation of the time averaged mean field
as the cylinder flow transitioned from a steady to an unsteady state. Mode O#e has an eigenvalue of X ¼ 2:226—0:0163i. It is
temporally stable because Xi < 0 and the amplitude of this mode oscillates as it decays in time. The û and v̂ eigenvector
fields have maximum amplitudes an order of magnitude higher than that of the ŵ field. These fields are illustrated in
Fig. 10(a) and (b), respectively. These modes exhibit the classical features of what one would expect for a wake type mode
as presented in [25].
Fig. 8. BiGlobal eigenvalues for the ellipse base flow at Rec ¼ 200 with b ¼ 1. The (a) complete eigenspectrum with the monotonically growing mode M"
e

and oscillatory decaying mode O#e highlighted; and (b) the convergence of eigenvalues M"
e and O#e with the number of points which is ðNf1 þ 1Þ � ðNf2 þ 1Þ.

Fig. 9. Monotonically growing ellipse mode M"
e . The real component of: (a) û; and (b) ŵ. The associated eigenvalue is X ¼ 0:3716i.

Fig. 10. Oscillatory decaying ellipse mode O#e . The real component of: (a) û; and (b) v̂ . The associated eigenvalue is X ¼ �2:226—0:0163i.
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6.2. Airfoil stability results

The airfoil eigen-spectrum is illustrated in Fig. 11(a), again with two eigenmodes highlighted: a monotonically growing
mode M"

a; and an oscillatory growing mode O"a. To ensure the BiGlobal grid in physical space is the same size as the previous
ellipse case, a larger wall normal domain size of fmax

2 ¼ 16c is required. This is due to the properties of the airfoil conformal
mapping functions. Having a larger domain means that more points are required to attain the same level of resolution. The
highest resolution case has Nf1 ¼ 249 and Nf2 ¼ 250. At this resolution a minimum of 1024 and 2048 CPUs were respectively
needed on the Mare Nostrum and Blue Gene/P facilities in order to allocate the 1 Tb of memory required to solve the EVP. Note
that each node of the former facility has double the amount of memory as those on the latter. As was done previously for the
ellipse case, additional lower resolution cases were run to confirm the convergence of the spectra. The eigenvalues of M"

a and
Fig. 11. BiGlobal eigenvalues for the airfoil base flow at Rec ¼ 200 with b ¼ 1. The (a) complete eigenspectrum with the monotonically growing mode M"
a

and oscillatory decaying mode O"a highlighted; and (b) the convergence of eigenvalues M"
a and O"a with the number of points which is ðNf1 þ 1Þ � ðNf2 þ 1Þ.

Fig. 12. Monotonically growing airfoil mode M"
a . The real component of: (a) û; and (b) ŵ. The associated eigenvalue is X ¼ 0:1663i.

Fig. 13. Oscillatory growing airfoil mode O"a . The real component of: (a) û; and (b) v̂ . The associated eigenvalue is X ¼ 2:3991þ 0:2019i.
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O"a are listed in Fig. 11(b). Convergence of the eigenvalues is again demonstrated. It is not clear, however, whether the growth
rate of the O"a mode is converged at this resolution.

The properties of the eigenmodes M"
a and O"a from the highest resolution case are again presented. Mode M"

a is a mono-
tonically unstable mode with an eigenvalue of X ¼ 0:1725i. Its eigenvector fields û and ŵ are illustrated in Fig. 12(a) and (b),
respectively. This mode has very similar characteristics to the M"

e mode for the ellipse, with the structures growing in size
and amplitude in the streamwise direction. Mode O"a has an eigenvalue of X ¼ 2:2883þ 0:1664i. The eigenvector fields of O"a
in Fig. 13 again have the classical wake type mode characteristics observed in the ellipse mode O#e. However, for this partic-
ular value of b the airfoil mode O"a is unstable whilst the ellipse mode O#e is stable. Additional simulations of the airfoil basic
state were undertaken, and it was found that the flow is unsteady at Rec ¼ 225. This indicates that the flow is in a very sen-
sitive region in Rec space.

7. Concluding remarks

A novel methodology has been presented to analyse the problem at hand in the frame of BiGlobal stability theory. Con-
formal mapping techniques were used to transform a rectangular computational mesh in order to represent the geometry of
the problem. The Navier–Stokes equations written in curvilinear coordinates were linearised and the linear operator for the
BiGlobal eigenvalue problem obtained. Two similar geometries were analysed: a NACA0015 airfoil; and an ellipse with
AR ¼ 8. Both configurations were at the same angle of attack of 18� and Rec ¼ 200. At these conditions both flows were steady
and separation occurred just downstream of the leading edge. The amplitude functions of the eigenmodes recovered were
related to the wake and the separated regions.

The question may be raised regarding the computing cost of, on the one hand setting up the discrete matrix and comput-
ing its leading Ritz values and corresponding vectors and, on the other hand, employing time-marching schemes in which
the matrix is never formed (eg. [2]). Indeed, the leading wake mode in the related application of a NACA 0012 airfoil [38]
has been obtained by the latter approach at orders-of-magnitude lower computing effort compared with that resulting from
the methodology presented herein. However, no direct comparisons have been performed, in which a fixed, large ðOð103ÞÞ
number of eigenvalues and eigenvectors need be computed by the time-stepping approach, and no speculations will be at-
tempted on the potential existence of thresholds beyond which one or the other method should be used. What has been
shown in earlier work [30] and is confirmed by the present computations is that storage and parallel inversion of the matrix
is a process which scales linearly with the number of processes utilised, such that access to an increasingly large window of
the full eigenspectrum may be offered by massive parallelisation. Nevertheless, the question whether the proposed storage-
and-inversion methodology is a viable alternative to the very efficient time-stepping approaches available in the community
is a question which should be addressed carefully in future works.
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Appendix A. Perturbation form of the Navier–Stokes equations in curvilinear coordinates

The linearised perturbation form of the NSE in curvilinear coordinates is fully expanded below. A 2D structure to the base
flow is assumed where �f3 ¼ @�f3=@nj ¼ @�fi=@n3 ¼ 0. Also as the conformal mappings are only applied in the ðx; yÞ plane, z ¼ f3.
This implies that @z=@f3 ¼ @f3=@z ¼ 1;h3 ¼ 1 and all derivatives of h3 are zero. Applying these simplifications the continuity
equation is
0 ¼ @h2

@f1

~n1 þ h2
@~n1

@f1
þ @h1

@f2

~n2 þ h1
@~n2

@f2
þ h1h2

@~n3

@f3
; ðA:1Þ
the momentum equation for ~n1 is
@~n1

@t
¼ � 1

h1

@�n1

@f1

~n1 �
1
h2

@�n1

@f2

~n2 �
1
h1

@~p
@f1
� Z2D

~n1; ðA:2Þ
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the momentum equation for ~n2 is
@~n2

@t
¼ � 1

h1

@�n2

@f1

~n1 �
1
h2

@�n2

@f2

~n2 �
1
h2

@~p
@f2
� Z2D

~n2; and ðA:3Þ
the momentum equation for ~n3 is
@~n3

@t
¼ � @~p

@f3
� Z2D

~n3; ðA:4Þ
where Z2D is a linear operator given by
Z2D ¼ �n1
1
h1

@

@f1
þ �n2

1
h2

@

@f2

� 1
Reh1h2

@h2

@f1

1
h1

@

@f1
� @h1

@f1

h2

h2
1

@

@f1
þ h2

h1

@2

@f2
1

þ @h1

@f2

1
h2

@

@f2
� @h2

@f2

h1

h2
2

@

@f2
þ h1

h2

@2

@f2
2

þ h1h2
@2

@f2
3

" #
: ðA:5Þ
Appendix B. Linear operator in curvilinear coordinates

Here the equations presented in Appendix A are presented in a matrix form representative of the means that the EVP is
posed in the code. A complementary 2D perturbation structure is now also assumed. It has a periodic structure in time with a
complex frequency X, and a periodic structure in the spanwise direction with real wavenumber b. Applying this perturbation
structure to the equations presented Appendix A, the system can be written in matrix form as
Að�q; bÞq̂ ¼ �iX Bq̂; where ðB:1Þ

Að�q; bÞ ¼

Lf1 n̂1
Lf1 n̂2

0 Lf1 p̂

Lf2 n̂1
Lf2 n̂2

0 Lf3 p̂

0 0 Lf3 n̂3
Lf2 p̂

Lcn̂1
Lcn̂2

Lcn̂3
0

0
BBB@

1
CCCA; and B ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

0
BBB@

1
CCCA: ðB:2Þ
The blocks of linear operator Að�q; bÞ are detailed below. Note in the following equations the notation of @fi
� @=@fi and

@fifj
� @2=@fi@fj is adopted. The blocks associated with the continuity equation are
Lcn̂1
¼ h2@f1 þ

@h2

@f1
; ðB:3Þ

Lcn̂2
¼ h1@f2 þ

@h1

@f2
; and ðB:4Þ

Lcn̂3
¼ ibh1h2: ðB:5Þ
The blocks associated with the momentum equation for ~n1 are
Lf1 n̂1
¼ � 1

h1

@�n1

@f1
� Z2D; ðB:6Þ

Lf1 n̂2
¼ � 1

h2

@�n1

@f2
; and ðB:7Þ

Lf1 p̂ ¼ �
1
h1
@f1 : ðB:8Þ
The blocks associated with the momentum equation for ~n2 are
Lf2 n̂1
¼ � 1

h1

@�n2

@f1
; ðB:9Þ

Lf2 n̂2
¼ � 1

h2

@�n2

@f2
� Z2D; and ðB:10Þ

Lf2 p̂ ¼ �
1
h2
@f2 : ðB:11Þ
Finally, the blocks associated with the momentum equation for ~n3 are
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Lf3 n̂3
¼ �Z2D; and ðB:12Þ

Lf3 p̂ ¼ �ib: ðB:13Þ
where Z2D is the discrete form of Z2D and given by
Z2D ¼
�n1

h1
� 1

Re
@h2

@f1

1

h2
1h2

� @h1

@f1

1

h3
1

 !" #
@f1 �

1

Reh2
1

@f1@f1 þ
�n2

h2
� 1

Re
@h1

@f2

1

h1h2
2

� @h2

@f2

1

h3
2

 !" #
@f2 �

1

Reh2
2

@f2@f2

þ b2

Re
: ðB:14Þ
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